
26/08/2022, 19:51 Container Anatomy :: BUILD-A-CONTAINER WORKSHOP

https://redhat-scholars.github.io/build-a-container/intro-container-workshop/1.0/container-anatomy.html 1/12

Container Anatomy
Contents

1. What makes up a Container?

2. Container Image Format

3. Containerfile

4. Container Identification

5. Container Runtime

6. Container Tools

But how would you use these tools? The commands are presented as examples to read and not run.

Podman

Buildah

Skopeo

7. Container Registries

Public registries are:

Private registries have:

Red Hat’s Enterprise Container Registry

More information

10 MINUTE READ

If you are new to containers, this section will help your understanding in what actually makes up a

container,
introduce the Open Container Initiative (OCI) specifications and demystify some of what

is actually happening under the covers.

BUILD-A-CONTAINER WORKSHOP

https://developers.redhat.com/
https://redhat-scholars.github.io/build-a-container

26/08/2022, 19:51 Container Anatomy :: BUILD-A-CONTAINER WORKSHOP

https://redhat-scholars.github.io/build-a-container/intro-container-workshop/1.0/container-anatomy.html 2/12

1. What makes up a Container?

A Container can be defined as a process with its own file system. The process is governed by the

OCI runtime specification (github.com/opencontainers/runtime-spec)
whilst the file system and

configuration is governed by the OCI container image format (github.com/opencontainers/image-

spec).

These specifications are open industry standards by the Open Container Initiative (OCI) which is an

open governance structure for the express purpose of creating standards around container formats

and runtimes.

2. Container Image Format

Container images are made up of layers, most of which are immutable with the exception of a write-

able upper layer. A union file system provides a logical view when the container is running. (Over-

layFS is a union mount filesystem implementation for Linux). The union file system works on top of

the other file-systems. It gives a single coherent and unified view to files and directories of separate

https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/image-spec

26/08/2022, 19:51 Container Anatomy :: BUILD-A-CONTAINER WORKSHOP

https://redhat-scholars.github.io/build-a-container/intro-container-workshop/1.0/container-anatomy.html 3/12

file-system. In other words, it mounts multiple directories to a single root. It is more of a mounting

mechanism than a file system.

Today you are the container builder, so the important aspects to understand are:

1. Choose to have fewer layers as it takes less time to build the logical view union file system at

runtime.

2. Smaller container images are preferable as they will take less time to download and use less

disk space.

3. Upper layers may potentially overwrite bottom layers. So a file may not be present because it

was deleted by an upper layer.

4. Logically deleting the file in the upper layer will still add to overall image size.

Within the container image, layers are formatted as archives (tar files) and are indexed in Image in-

dex and Manifest (json format) files.
Furthermore config files provide the means of storing com-

mand line options, environment variables, and properties such as time created.
The figure below

shows the extract of a container image and how the internals of layering, indexing are organised.

26/08/2022, 19:51 Container Anatomy :: BUILD-A-CONTAINER WORKSHOP

https://redhat-scholars.github.io/build-a-container/intro-container-workshop/1.0/container-anatomy.html 4/12

3. Containerfile

A Containerfile is a text based file which provides instructions to assemble an image. Each row in a
Containerfile corresponds to a new layer. The available commands that are usable inside a Con-

tainerfile and a Dockerfile are equivalent.

The Containerfile below is a mysql image from the Red Hat Container Catalog.

As the image is built the commands are executed in order from top down until the image is built. The

table below provides an overview of typical commands seen in a Containerfile.

FROM To specify the parent image.

WORKDIR To set the working directory for any commands that follow in the Dockerfile.

RUN To install any applications and packages required for your container.

The above container image was exported to a tar file with the podman save command.

NOTE

https://catalog.redhat.com/software/containers/search?q=mysql&p=1
https://docs.podman.io/en/latest/markdown/podman-save.1.html

26/08/2022, 19:51 Container Anatomy :: BUILD-A-CONTAINER WORKSHOP

https://redhat-scholars.github.io/build-a-container/intro-container-workshop/1.0/container-anatomy.html 5/12

COPY To copy over files or directories from a specific location.

ADD As COPY, but also able to handle remote URLs and unpack compressed files.

ENTRYPOINT Command that will always be executed when the container starts. If not specified, the

default is /bin/sh -c

CMD Arguments passed to the entrypoint. If ENTRYPOINT is not set (defaults to /bin/sh -c),

the CMD will be the commands the container executes.

EXPOSE To define which port through which to access your container application.

LABEL To add metadata to the image.

You may also see Containerfiles with multistage builds where multiple FROM commands may be

present. Multistage builds provide a means to help refine the runtime image as opposed to having

an image which also contains all the necessary software to build. For instance you typically don’t

need maven to run a java based jar but do need it to build.

4. Container Identification

Once you build a container you need to give it a tag to be able to identify it. An image tag is a label

applied to a container image in a repository that distinguishes a specific image from other images.

Typically, the tag represents a version number of some sort.

Containers fully qualified image registry path is below:

If you only reference a container by its short name i.e. rhel8/mysql-80:latest , there will be an assumption
made as to which register to try. For example in RHEL 8, the default registries that will be looked up are
reg-

istry.access.redhat.com, registry.redhat.io, docker.io

Red Hat recommends that users always use fully qualified names when referring to container images in any
context.

NOTE

26/08/2022, 19:51 Container Anatomy :: BUILD-A-CONTAINER WORKSHOP

https://redhat-scholars.github.io/build-a-container/intro-container-workshop/1.0/container-anatomy.html 6/12

5. Container Runtime

Like the container image specification, there is a runtime specification which defines a lifecycle for a

container. This defines hooks to be invoked prior to starting, creating or shutting down the container.

The state of a container includes properties like OCI Version, status, process id (pid) and container

ID. The container id and must be unique across all containers on this host and can be found with the

following command:

podman ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES IS INFRA

d65aecc325a4 ubi8/ubi /bin/bash 3 secs ago Exited (0) 5 secs ago
peaceful_hopper false

74b1da000a11 rhel8/rsyslog rsyslog.sh 2 mins ago Up About a minute
musing_brown false

6. Container Tools

The open source community has created new container tools to eliminate the required use of root
access and a daemon process compared with how Docker is designed.

These new tools buildah, skopeo and podman each provide more focussed functionality. You can

think of podman as a developers replacement for Docker,
skopeo as a simpler way to inspect and

copy images and buildah provides specialist ways of building images whether from a Containerfile or

interactively.

https://github.com/opencontainers/runtime-spec

26/08/2022, 19:51 Container Anatomy :: BUILD-A-CONTAINER WORKSHOP

https://redhat-scholars.github.io/build-a-container/intro-container-workshop/1.0/container-anatomy.html 7/12

But how would you use these tools? The commands are presented as examples to
read and not run.

Podman

Podman command format will be very familiar to Docker users but doesnt require a daemon.

Pull an image from the registry

podman pull registry.fedoraproject.org/f34/python3

List images in local storage

podman images

Run the container in the background and map ports

podman run -dt -p 8080:8080/tcp registry.fedoraproject.org/f29/httpd

Buildah

Buildah can act as a drop-in replacement for the Docker daemon’s docker build command (i.e., build-

ing images with a traditional Dockerfile) but is flexible enough to allow you to build images with

whatever tools you prefer to use. (bud = build-using-dockerfile)

26/08/2022, 19:51 Container Anatomy :: BUILD-A-CONTAINER WORKSHOP

https://redhat-scholars.github.io/build-a-container/intro-container-workshop/1.0/container-anatomy.html 8/12

buildah bud -t hello .

is the same as

docker build -t hello .

Unlike Docker build, Buildah doesn’t commit changes to a layer automatically for every instruc-
tion meaning
it results in a single layer (great news for union file system performance). Furthermore

it allows you to build images from scratch (i.e. no base container or no FROM image) so you can

make containers as small as possible.

To use Buildah in an interactive mode:

1. Start with creating a working container with Buildah.

The following saves the container name into the $container variable to use in subsequent com-

mands. You can view working containers with the buildah
containers command.

container=$(buildah from registry.access.redhat.com/ubi8/python-38)

echo $container

python-38-working-container

buildah containers

CONTAINER ID BUILDER IMAGE ID IMAGE NAME
CONTAINER NAME

df1d24a08d19 * a6d7938156c7 registry.access.redhat.com/ub... python-
38-working-container

2. Interact with a bash shell as your are building it like below.

buildah run $container bash

(app-root) bash-4.4$ mkdir scripts

.....

exit

3. Next add configuration, labels and environment variables.

buildah config --label maintainer="John Smith <john.smith@gmail.com>"
$container

buildah config --env FLASK_APP=flaskr --env FLASK_ENV=development
$container

buildah config --workingdir /opt/hello-2.10 $container

buildah config --entrypoint /usr/local/bin/hello $container

buildah copy $container hello-2.10.tar.gz /tmp/hello-2.10.tar.gz

4. Finally save the working container to an image hello:latest which will then be available to run

26/08/2022, 19:51 Container Anatomy :: BUILD-A-CONTAINER WORKSHOP

https://redhat-scholars.github.io/build-a-container/intro-container-workshop/1.0/container-anatomy.html 9/12

buildah commit $container hello:latest

For more information see Getting started with Buildah

Skopeo

Inspect a container without needing the docker daemon.

skopeo inspect docker://docker.io/fedora

Copy containers from one registry to another.

skopeo copy --dest-creds prod_user:prod_pass
docker://internal.registry/myimage:latest
docker://production.registry/myimage:v1.0

In the single line above the skopeo copy command replaces the 4 commands below.

docker login ...

docker pull internal.registry/myimage:latest

docker tag internal.registry/myimage:latest production.registry/myimage:v1.0

docker push production.registry/myimage:v1.0

7. Container Registries

When working with container images, you need somewhere to save and access them as they are cre-

ated and that’s where a container registry comes in.
The registry essentially acts as a place to store

container images and share them out via a process of uploading to (pushing) and downloading from

(pulling).

There are two types of container registry: public and private.

Public registries are:

great for individuals or small teams

get up and running as quickly as possible. Basic in their abilities.

easy to use

Private registries have:

https://www.redhat.com/sysadmin/getting-started-buildah

26/08/2022, 19:51 Container Anatomy :: BUILD-A-CONTAINER WORKSHOP

https://redhat-scholars.github.io/build-a-container/intro-container-workshop/1.0/container-anatomy.html 10/12

Security and privacy

Enterprise container image storage

Host remotely or on-premises

Typically your enterprise will require a container registry and we recommend to look for features

such as: multiple authentication systems; role-based access control management; vulnerability scan-

ning capabilities; auditable logs
and optimized for automation.

Red Hat’s Enterprise Container Registry

Red Hat Quay is a private container image registry that enables you to build, distribute, and deploy

containers with the storage you need to scale quickly.
It analyzes your images for security vulnerabil-

ities using Clair, identifying potential issues and addressing them before they become security risks.
​

You can try Quay through a free account with Quay.io which is a managed service OR browse the re-

sults of scanning through the Red Hat Container catalog like in the figure below.

https://quay.io/
https://catalog.redhat.com/software/containers/explore

26/08/2022, 19:51 Container Anatomy :: BUILD-A-CONTAINER WORKSHOP

https://redhat-scholars.github.io/build-a-container/intro-container-workshop/1.0/container-anatomy.html 11/12

More information

But what else do you need to know about containers? Well you might want to understand

1. File system mounting

2. User permissions

3. Port mapping

4. Network

5. Resource limiting

6. Secrets, configuration, environment variables

7. Host system

Many of these will be covered as we step through the exercises but for more information take a look

at

Building Running and Managing Containers in RHEL 8

What is a container registry?

Prev Next

Setup‹ Running Containers ›

Contents

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/building_running_and_managing_containers/index#understanding-standard-red-hat-base-images_building-running-and-managing-containers
https://www.redhat.com/en/topics/cloud-native-apps/what-is-a-container-registry
https://redhat-scholars.github.io/build-a-container/intro-container-workshop/1.0/introduction.html
https://redhat-scholars.github.io/build-a-container/intro-container-workshop/1.0/podman-intro.html

26/08/2022, 19:51 Container Anatomy :: BUILD-A-CONTAINER WORKSHOP

https://redhat-scholars.github.io/build-a-container/intro-container-workshop/1.0/container-anatomy.html 12/12

1. What makes up a Container?

2. Container Image Format

3. Containerfile

4. Container Identification

5. Container Runtime

6. Container Tools

But how would you use these tools? The commands are presented as examples to read and not run.

Podman

Buildah

Skopeo

7. Container Registries

Public registries are:

Private registries have:

Red Hat’s Enterprise Container Registry

More information

