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Background

Why use hardware acceleration for deep learning (DL):
Increasing demand in environments like real-time and datacenters alike, requires efficiency
Requires billions of operations
Breaks down into same parallelizable compute patterns - great fit for hardware acceleration

Previous approaches for deep learning hardware acceleration:

Quantization
Sparse/pruned NNs
Hardware architecture design automation
Hardware-oriented NN model design automation

Chosen under-explored approach: Advancements and application of fast matrix
multiplication in custom hardware designs

Expensive portion of most neural networks (NN) decomposes to GEMM
NN’s algebra is performed using reduced complexity GEMM
Less explored route for continuing progress
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Background - Systolic Arrays - Efficient Architectures for MM Acceleration

2D array of multiply-accumulate (MAC) units
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+

aik × bkj

Processing Element

Benefits

Reduced reads from memory
Reduced memory bandwidth and power
consumption

Local and regular interconnections
between processors

Increases max clock frequency

Has been implemented commercially in
Google’s Tensor Processing Unit
(TPU) [1]

[1] Norman P. Jouppi et al. “In-Datacenter Performance Analysis of a Tensor Processing Unit”. In: SIGARCH Comput.
Archit. News 45.2 (June 2017), 1–12
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Implemented DL Accelerator System Design Overview

MXU

Accumulation

Arithmetic Unit

Post-GEMM Unit

Bias

Re-scaling

Activation

Pooling

Memory Unit

Instruction

PCIe

SRAM
Layer IO

Weight
DRAM
External Layer

Weight

Unit

RxTx
Unit

Tiler IO Tiler

GEMM Unit

Main clock

Padding

Padding

Padding clock

Quantization clock

Pooling clock

Instruction clock

RxTx clocks

DRAM clocks

Weight Tiler clock

Layerio IO SRAM clock

Host DMA

System overview

Matrix Multiply Unit (MXU) - Systolic Array

Post-GEMM Unit - NN-specific operations

Memory Unit - Memory access control, On-chip
memory

Weight DRAM (external memory)

RxTx Unit - PCIe interface to host

Instruction Unit
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System Design - Used FPGA Platform

https://rocketboards.org/foswiki/Documentation/Arria10SoCGSRD
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Fast Inner-Product Algorithms and Hardware Architectures

Winograd’s Fast Inner Product (FIP) [2]:

ci,j =
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[2] S. Winograd. “A New Algorithm for Inner Product”. In: IEEE Trans. Comput. C-17.7 (1968), pp. 693–694

[3] Trevor E. Pogue and Nicola Nicolici. “Fast Inner-Product Algorithms and Architectures for Deep Neural Network
Accelerators”. In: IEEE Trans. Comput. 73.2 (2024), pp. 495–509
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FFIP Results

*LUT/ALM resources share a similar curve as registers

*Memory resources are equivalent for all designs
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Proposed Karatsuba Matrix Multiplication (KMM)
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[4] Requires 3 single-digit mults instead of 4

But requires 3 extra additions, increasing
overall #operation
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2-Digit Karatsuba Matrix Multiplication (KMM2)
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d = matrix height/width

Increase in number of additions with
complexity O(d2) is now insignificant
relative to the reduction of 3 instead of 4
single-digit MM of complexity O(d3)

[4] Anatolii Alekseevich Karatsuba and Yu P Ofman. “Multiplication of many-digital numbers by automatic computers”. In:
Proc. Doklady Akademii Nauk. Vol. 145. 2. Russian Academy of Sciences. 1962, pp. 293–294
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Proposed KMM Hardware Architecture
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KMM Results

Area(ADD[w ]) = w AU

Area(FF[w ]) = 0.7 w AU

Area(MULT[w ]) = w2 AU

Figure (1) Maximum achievable AU compute efficiencies for the
fixed-precision MM1, KSMMn, and KMMn architectures.
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Strassen Matrix Multiplication (SMM) [5]

Traditional 4-tile MM requires 8 tile MMs:[
C11 C12

C21 C22

]
=

[
A11B11 + A12B21 A11B21 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]
Strassen [5] requires 7 tile MMs:

T1 = A11 + A22

T2 = A21 + A22

T3 = A11

T4 = A22

T5 = A11 + A12

T6 = A21 − A11

T7 = A12 − A22

S1 = B11 + B22

S2 = B11

S3 = B12 − B22

S4 = B21 − B11

S5 = B22

S6 = B11 + B12

S7 = B21 + B22

Q1 = T1 · S1
Q2 = T2 · S2
Q3 = T3 · S3
Q4 = T4 · S4
Q5 = T5 · S5
Q6 = T6 · S6
Q7 = T7 · S7

C11 = Q1 + Q4 − Q5 + Q7

C12 = Q3 + Q5

C21 = Q2 + Q4

C22 = Q1 − Q2 + Q3 + Q6

[5] Volker Strassen. “Gaussian elimination is not optimal”. In: Numer. Math. 13.4 (1969), pp. 354–356
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Proposed SMM Hardware Architecture
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Q4 i:m:,:

Q5 i:m:,:
Q6 i:m:,:

Q7 i:m:,:

T2 i:m:,:

S2 :,j:n:

T3 i:m:,:

S3 :,j:n:

T4 i:m:,:

S4 :,j:n:

T5 i:m:,:

S5 :,j:n:

T6 i:m:,:

S6 :,j:n:

T7 i:m:,:

S7 :,j:n:

A11i:m:,:
A12i:m:,:

A21i:m:,:

A/B Addition Vectors

Q Addition Vectors

Ai:m:,: B:,j:n:

A22i:m:,:

T1 i:m:,:

S1 :,j:n:

Figure (2) SMMr systolic-array architecture for
implementing r levels of Strassen recursion in hardware.

Unlike CPU/GPU
implementations, extra additions
& data movements are performed
in parallel with the MMs

Eliminates extra execution time
needed for these steps
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FFIP+SMM Results

Table (1) FFIP+SMMr architectures in a DNN accelerator compared with prior state-of-the-art accelerators.

TNNLS ’22 [6] TCAD ’22 [7] Entropy ’22 [8] TCAD ’24 [9] Proposed FFIP+SMM1 32×32

FPGA Arria 10 GX 1150 Arria 10 GX 1150 Arria 10 GX 1150 Stratix 10 GX650 Arria 10 GX 1150

ALMs 304K 304K 303K 152K 216K

Registers 889K 890K - 567K 627K

Memories 2334 2334 1953 2056 2713

DSPs 1473 1473 1503 1024 1518

Frequency (MHz) 200 220 172 200 313

Input bitwidth
(fixed-point)

8 8 8 8 8 8 8 8 8 8 8

Model ResNet-
50

VGG
16

Bayes
ResNet18

Bayes
VGG11

RCNN
ResNet50

RCNN
VGG16

ResNet-
50

ResNet-
152

ResNet-
50

ResNet-
101

ResNet-
152

Throughput
(GOPS)

1519 1295 1590 534 719 865 800 794 4006 4397 4568

mults/multiplier
clock cycle

1 0.645 0.550 0.639 0.206 0.696 0.837 0.977 0.969 1.674 1.837 1.908

1 Multiplier compute efficiency, measures how efficiently multipliers are utilized. It can surpass 1 in the proposed designs due to the algebraic enhancements.

[6] Shuanglong Liu et al. “Toward full-stack acceleration of deep convolutional neural networks on FPGAs”. In: IEEE Trans.
Neural Netw. Learn. Syst. 33.8 (2022), pp. 3974–3987

[7] Hongxiang Fan et al. “FPGA-based Acceleration for Bayesian Convolutional Neural Networks”. In: IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst. 41.12 (2022), pp. 5343–5356

[8] Jianjing An et al. “An OpenCL-Based FPGA Accelerator for Faster R-CNN”. In: Entropy 24.10 (2022), p. 1346

[9] Kui Dai et al. “DCP-CNN: Efficient Acceleration of CNNs With Dynamic Computing Parallelism on FPGA”. In: IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst. (2024)
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Conclusion and Future Work

Future Work

Floating-point algorithms and architectures

Non-systolic-array architectures

Toom-Cook Matrix Multiplication

Transformer acceleration

Conclusion

Contributes to the field of DL and MM acceleration through under-explored direction

Proposes new efficient MM algorithms and/or their systolic-array hardware architectures

Increases performance-per-area capabilities of hardware accelerators

Thank You! Questions?
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