Algebraic Enhancements for Systolic Arrays

Trevor Pogue

Department of Electrical and Computer Engineering McMaster University

November 22 2024

- Backround
- Deep Learning Accelerator System Architecture
- Fast Inner-Product Algorithms and Hardware Architectures
- Karatsuba Matrix Multiplication Algorithm and Hardware Architectures
- Strassen Hardware Architectures
- Conclusion and Future Work

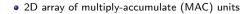
Backround

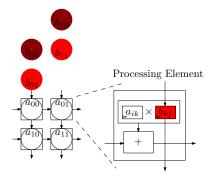
- Deep Learning Accelerator System Architecture
- Fast Inner-Product Algorithms and Hardware Architectures
- Karatsuba Matrix Multiplication Algorithm and Hardware Architectures
- Strassen Hardware Architectures
- Conclusion and Future Work

- Why use hardware acceleration for deep learning (DL):
 - Increasing demand in environments like real-time and datacenters alike, requires efficiency
 - Requires billions of operations
 - Breaks down into same parallelizable compute patterns great fit for hardware acceleration

- Why use hardware acceleration for deep learning (DL):
 - Increasing demand in environments like real-time and datacenters alike, requires efficiency
 - Requires billions of operations
 - Breaks down into same parallelizable compute patterns great fit for hardware acceleration
- Previous approaches for deep learning hardware acceleration:
 - Quantization
 - Sparse/pruned NNs
 - · Hardware architecture design automation
 - Hardware-oriented NN model design automation

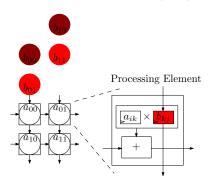
- Why use hardware acceleration for deep learning (DL):
 - Increasing demand in environments like real-time and datacenters alike, requires efficiency
 - Requires billions of operations
 - Breaks down into same parallelizable compute patterns great fit for hardware acceleration
- Previous approaches for deep learning hardware acceleration:
 - Quantization
 - Sparse/pruned NNs
 - · Hardware architecture design automation
 - · Hardware-oriented NN model design automation
- Chosen under-explored approach: Advancements and application of fast matrix multiplication in custom hardware designs
 - Expensive portion of most neural networks (NN) decomposes to GEMM
 - NN's algebra is performed using reduced complexity GEMM
 - Less explored route for continuing progress





^[1] Norman P. Jouppi et al. "In-Datacenter Performance Analysis of a Tensor Processing Unit". In: SIGARCH Comput. Archit. News 45.2 (June 2017), 1–12

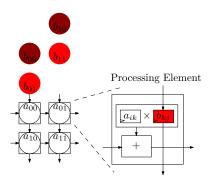
• 2D array of multiply-accumulate (MAC) units



Benefits

- Reduced reads from memory
 - Reduced memory bandwidth and power consumption
- Local and regular interconnections between processors
 - Increases max clock frequency

^[1] Norman P. Jouppi et al. "In-Datacenter Performance Analysis of a Tensor Processing Unit". In: SIGARCH Comput. Archit. News 45.2 (June 2017), 1–12

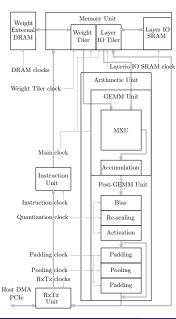


Benefits

- Reduced reads from memory
 - Reduced memory bandwidth and power consumption
- Local and regular interconnections between processors
 - Increases max clock frequency
- Has been implemented commercially in Google's Tensor Processing Unit (TPU) [1]

^[1] Norman P. Jouppi et al. "In-Datacenter Performance Analysis of a Tensor Processing Unit". In: SIGARCH Comput. Archit. News 45.2 (June 2017), 1–12

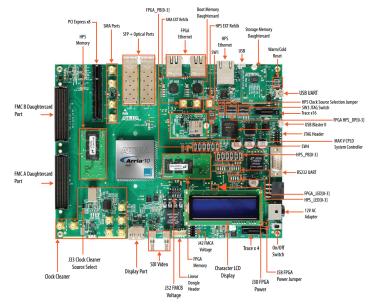
- Backround
- Deep Learning Accelerator System Architecture
- Fast Inner-Product Algorithms and Hardware Architectures
- Karatsuba Matrix Multiplication Algorithm and Hardware Architectures
- Strassen Hardware Architectures
- Conclusion and Future Work



System overview

- Matrix Multiply Unit (MXU) Systolic Array
- Post-GEMM Unit NN-specific operations
- Memory Unit Memory access control, On-chip memory
- Weight DRAM (external memory)
- RxTx Unit PCIe interface to host
- Instruction Unit

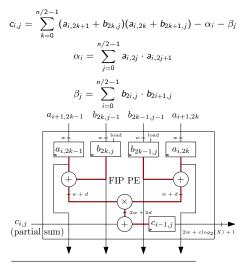
System Design - Used FPGA Platform



https://rocketboards.org/foswiki/Documentation/Arria10SoCGSRD

- Backround
- Deep Learning Accelerator System Architecture
- Fast Inner-Product Algorithms and Hardware Architectures
- Karatsuba Matrix Multiplication Algorithm and Hardware Architectures
- Strassen Hardware Architectures
- Conclusion and Future Work

Winograd's Fast Inner Product (FIP) [2]:



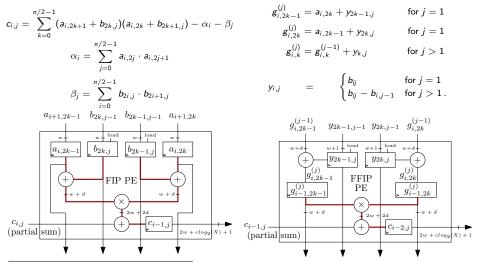
[2] S. Winograd. "A New Algorithm for Inner Product". In: IEEE Trans. Comput. C-17.7 (1968), pp. 693–694
[3] Trevor E. Pogue and Nicola Nicolici. "Fast Inner-Product Algorithms and Architectures for Deep Neural Network Accelerators". In: IEEE Trans. Comput. 73.2 (2024), pp. 495–509

Trevor Pogue (McMaster University)

Algebraic Enhancements for Systolic Arrays

Fast Inner-Product Algorithms and Hardware Architectures

Winograd's Fast Inner Product (FIP) [2]:



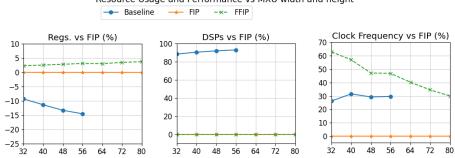
 [2] S. Winograd. "A New Algorithm for Inner Product". In: IEEE Trans. Comput. C-17.7 (1968), pp. 693–694
[3] Trevor E. Pogue and Nicola Nicolici. "Fast Inner-Product Algorithms and Architectures for Deep Neural Network Accelerators". In: IEEE Trans. Comput. 73.2 (2024), pp. 495–509

Trevor Pogue (McMaster University)

Algebraic Enhancements for Systolic Arrays

November 22 2024

Proposed Free-pipeline FIP (FFIP) [3]:



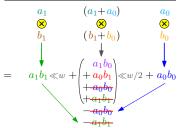
Resource Usage and Performance vs MXU width and height

- *LUT/ALM resources share a similar curve as registers
- *Memory resources are equivalent for all designs

- Backround
- Deep Learning Accelerator System Architecture
- Fast Inner-Product Algorithms and Hardware Architectures
- Karatsuba Matrix Multiplication Algorithm and Hardware Architectures
- Strassen Hardware Architectures
- Conclusion and Future Work

2-Digit Karatsuba Scalar Multiplication (KSM₂)

 $\begin{array}{c} a \times b \\ = \left(a_1 \ll w/2 \, + \, a_0\right) \times \left(b_1 \ll w/2 \, + \, b_0\right) \end{array}$



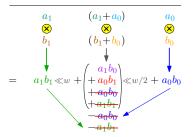
- [4] Requires 3 single-digit mults instead of 4
- But requires 3 extra additions, increasing overall #operation

^[4] Anatolii Alekseevich Karatsuba and Yu P Ofman. "Multiplication of many-digital numbers by automatic computers". In: Proc. Doklady Akademii Nauk. Vol. 145. 2. Russian Academy of Sciences. 1962, pp. 293–294

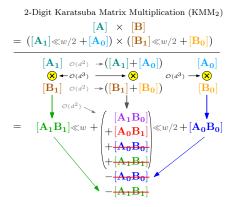
Proposed Karatsuba Matrix Multiplication (KMM)

2-Digit Karatsuba Scalar Multiplication (KSM₂)

 $a \times b = (a_1 \ll w/2 + a_0) \times (b_1 \ll w/2 + b_0)$



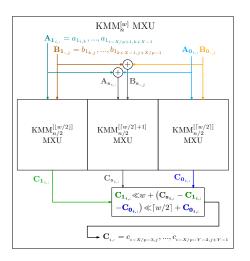
- [4] Requires 3 single-digit mults instead of 4
- But requires 3 extra additions, increasing overall #operation



- *d* = matrix height/width
- Increase in number of additions with complexity $\mathcal{O}(d^2)$ is now insignificant relative to the reduction of 3 instead of 4 single-digit MM of complexity $\mathcal{O}(d^3)$

^[4] Anatolii Alekseevich Karatsuba and Yu P Ofman. "Multiplication of many-digital numbers by automatic computers". In: Proc. Doklady Akademii Nauk. Vol. 145. 2. Russian Academy of Sciences. 1962, pp. 293–294

Proposed KMM Hardware Architecture



2-Digit Karatsuba Matrix Multiplication (KMM₂) $[\mathbf{A}] \times [\mathbf{B}]$ $= \left([\mathbf{A}_1] \ll w/2 + [\mathbf{A}_0] \right) \times \left([\mathbf{B}_1] \ll w/2 + [\mathbf{B}_0] \right)$ $[\mathbf{A}_1] \quad \mathcal{O}(d^2) \quad \rightarrow ([\mathbf{A}_1] + [\mathbf{A}_0]) \qquad [\mathbf{A}_0]$ $\begin{array}{c} (1-2) \\ \otimes \leftarrow \mathcal{O}(d^3) \\ \end{array} \xrightarrow{(1-2)} \\ \otimes \\ (B_1) \\ \mathcal{O}(d^2) \\ \end{array} \xrightarrow{(1-2)} \\ (B_1) \\ (B_0) \\ \end{array}$ $= [\mathbf{A}_{1}\mathbf{B}_{1}] \ll w + \begin{pmatrix} [\mathbf{A}_{1}\mathbf{B}_{0}] \\ + [\mathbf{A}_{0}\mathbf{B}_{1}] \end{pmatrix} \ll w/2 + [\mathbf{A}_{0}\mathbf{B}_{0}]$ $\left|+\frac{[\mathbf{A_0B_0}]}{[\mathbf{A_1B_1}]}\right|$

- d = matrix height/width
- Increase in number of additions with complexity $\mathcal{O}(d^2)$ is now insignificant relative to the reduction of 3 instead of 4 single-digit MM of complexity $\mathcal{O}(d^3)$

$$Area(ADD^{[w]}) = w AU$$

 $Area(FF^{[w]}) = 0.7 w AU$
 $Area(MULT^{[w]}) = w^2 AU$

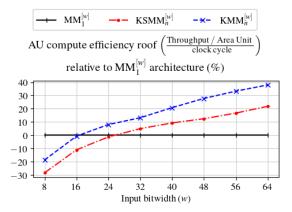


Figure (1) Maximum achievable AU compute efficiencies for the fixed-precision MM_1 , $KSMM_n$, and KMM_n architectures.

- Backround
- Deep Learning Accelerator System Architecture
- Fast Inner-Product Algorithms and Hardware Architectures
- Karatsuba Matrix Multiplication Algorithm and Hardware Architectures
- Strassen Hardware Architectures
- Conclusion and Future Work

Traditional 4-tile MM requires 8 tile MMs:

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{21} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}$$

Strassen [5] requires 7 tile MMs:

[5] Volker Strassen. "Gaussian elimination is not optimal". In: Numer. Math. 13.4 (1969), pp. 354-356

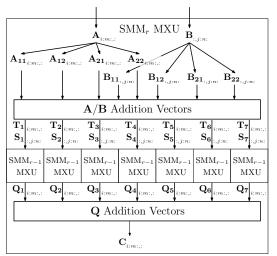


Figure (2) SMM_r systolic-array architecture for implementing r levels of Strassen recursion in hardware.

- Unlike CPU/GPU implementations, extra additions & data movements are performed in parallel with the MMs
- Eliminates extra execution time needed for these steps

Table (1)	FFIP+SMM _r	architectures in	a DNN	accelerator	compared	with	prior	state-of-the-art accelerators.
-----------	-----------------------	------------------	-------	-------------	----------	------	-------	--------------------------------

	TNNLS '22 [6]			TCAD '22 [7]		Entropy '22 [8]		24 [9]	Proposed FFIP+SMM ₁ 32×32		$M_1 32 \times 32$
FPGA	Arria 10 GX 1150		Arria 10 GX 1150		Arria 10 GX 1150		Stratix 10 GX650		Arria 10 GX 1150		
ALMs	304K		304K		303K		152K			216K	
Registers	889K		890K		-		567K		627K		
Memories	2334		2334		1953		2056		2713		
DSPs	1473		1473		1503		102	24	1518		
Frequency (MHz)	200		220		172		200		313		
Input bitwidth (fixed-point)	8	8	8	8	8	8	8	8	8	8	8
Model	ResNet- 50	VGG 16	Bayes ResNet1	Bayes 8 VGG11	RCNN ResNet50	RCNN VGG16	ResNet- 50	ResNet- 152	ResNet- 50	ResNet- 101	ResNet- 152
Throughput (GOPS)	1519	1295	1590	534	719	865	800	794	4006	4397	4568
mults/multiplier 1 clock cycle	0.645	0.550	0.639	0.206	0.696	0.837	0.977	0.969	1.674	1.837	1.908

1 Multiplier compute efficiency, measures how efficiently multipliers are utilized. It can surpass 1 in the proposed designs due to the algebraic enhancements.

[6] Shuanglong Liu et al. "Toward full-stack acceleration of deep convolutional neural networks on FPGAs". In: IEEE Trans. Neural Netw. Learn. Syst. 33.8 (2022), pp. 3974–3987

[7] Hongxiang Fan et al. "FPGA-based Acceleration for Bayesian Convolutional Neural Networks". In: IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 41.12 (2022), pp. 5343–5356

[8] Jianjing An et al. "An OpenCL-Based FPGA Accelerator for Faster R-CNN". In: Entropy 24.10 (2022), p. 1346

[9] Kui Dai et al. "DCP-CNN: Efficient Acceleration of CNNs With Dynamic Computing Parallelism on FPGA". In: IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. (2024)

- Backround
- Deep Learning Accelerator System Architecture
- Fast Inner-Product Algorithms and Hardware Architectures
- Karatsuba Matrix Multiplication Algorithm and Hardware Architectures
- Strassen Hardware Architectures
- Conclusion and Future Work

Future Work

- Floating-point algorithms and architectures
- Non-systolic-array architectures
- Toom-Cook Matrix Multiplication
- Transformer acceleration

Future Work

- Floating-point algorithms and architectures
- Non-systolic-array architectures
- Toom-Cook Matrix Multiplication
- Transformer acceleration

Conclusion

- Contributes to the field of DL and MM acceleration through under-explored direction
- Proposes new efficient MM algorithms and/or their systolic-array hardware architectures
- Increases performance-per-area capabilities of hardware accelerators

Future Work

- Floating-point algorithms and architectures
- Non-systolic-array architectures
- Toom-Cook Matrix Multiplication
- Transformer acceleration

Conclusion

- Contributes to the field of DL and MM acceleration through under-explored direction
- Proposes new efficient MM algorithms and/or their systolic-array hardware architectures
- Increases performance-per-area capabilities of hardware accelerators

Thank You! Questions?