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Background

@ Why use hardware acceleration for deep learning (DL):

o Increasing demand in environments like real-time and datacenters alike, requires efficiency
e Requires billions of operations
o Breaks down into same parallelizable compute patterns - great fit for hardware acceleration
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Background

@ Why use hardware acceleration for deep learning (DL):
o Increasing demand in environments like real-time and datacenters alike, requires efficiency
e Requires billions of operations
o Breaks down into same parallelizable compute patterns - great fit for hardware acceleration

@ Previous approaches for deep learning hardware acceleration:
o Quantization
e Sparse/pruned NNs
o Hardware architecture design automation
o Hardware-oriented NN model design automation

@ Chosen under-explored approach: Advancements and application of fast matrix
multiplication in custom hardware designs

o Expensive portion of most neural networks (NN) decomposes to GEMM
o NN's algebra is performed using reduced complexity GEMM
o Less explored route for continuing progress
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Background - Systolic Arrays - Efficient Architectures for MM Acceleration

@ 2D array of multiply-accumulate (MAC) units

Processing Element

Bl

[1] Norman P. Jouppi et al. “In-Datacenter Performance Analysis of a Tensor Processing Unit". In: SIGARCH Comput.
Archit. News 45.2 (June 2017), 1-12
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@ 2D array of multiply-accumulate (MAC) units
Benefits
. @ Reduced reads from memory

o Reduced memory bandwidth and power

. . consumption

@ Local and regular interconnections
Processing Element between processors
o Increases max clock frequency

-] @ Has been implemented commercially in
Google's Tensor Processing Unit
(TPU) [1]

[1] Norman P. Jouppi et al. “In-Datacenter Performance Analysis of a Tensor Processing Unit". In: SIGARCH Comput.
Archit. News 45.2 (June 2017), 1-12
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Implemented DL Accelerator System Design Overview
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System Design - Used FPGA Platform
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Fast Inner-Product Algorithms and Hardware Architectures

Winograd's Fast Inner Product (FIP) [2]:
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[2] S. Winograd. “A New Algorithm for Inner Product”. In: /EEE Trans. Comput. C-17.7 (1968), pp. 693-694

[3] Trevor E. Pogue and Nicola Nicolici. “Fast Inner-Product Algorithms and Architectures for Deep Neural Network
Accelerators”. In: IEEE Trans. Comput. 73.2 (2024), pp. 495-509
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Fast Inner-Product Algorithms and Hardware Architectures

Winograd's Fast Inner Product (FIP) [2]:

Proposed Free-pipeline FIP (FFIP) [3]:
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[2] S. Winograd. “A New Algorithm for Inner Product”. In: |EEE Trans. Comput. C-17.7 (1968), pp. 693-694
[3] Trevor E. Pogue and Nicola Nicolici. “Fast Inner-Product Algorithms and Architectures for Deep Neural Network
Accelerators”. In: IEEE Trans. Comput. 73.2 (2024), pp. 495-509
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FFIP Results

Resource Usage and Performance vs MXU width and height
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o *LUT/ALM resources share a similar curve as registers

@ *Memory resources are equivalent for all designs
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Proposed Karatsuba Matrix Multiplication (KMM)

2-Digit Karatsuba Scalar Multiplication (KSM2)
a x b
= (a1 <w/2 + ag) x (by <w/2 + by)

aq ((11+(I(|) ap
® ® ®
[)1 ([)1+ )

l a fb(] l

= a1by<w 4|+ apby |<w/2 + apby
Frrerbir
—égbo
s

@ [4] Requires 3 single-digit mults instead of 4

@ But requires 3 extra additions, increasing
overall #operation

[4] Anatolii Alekseevich Karatsuba and Yu P Ofman. “Multiplication of many-digital numbers by automatic computers”. In:
Proc. Doklady Akademii Nauk. Vol. 145. 2. Russian Academy of Sciences. 1962, pp. 293-294
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Proposed Karatsuba Matrix Multiplication (KMM)

2-Digit Karatsuba Matrix Multiplication (KMM3)

y _— [A] x [B]
2-Digit Karatsuba Scalar Multiplication (KSM2) _ ([A1]<<'u)/2 Jr[AoD % ([B1}<<w/2 + )
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@ [4] Requires 3 single-digit mults instead of 4 ¢ 4 — matrix height /width
@ But requires 3 extra additions, increasing o Increase in number of additions with
overall F£operation complexity O(d?) is now insignificant

relative to the reduction of 3 instead of 4
single-digit MM of complexity O(d?)

[4] Anatolii Alekseevich Karatsuba and Yu P Ofman. “Multiplication of many-digital numbers by automatic computers”. In:
Proc. Doklady Akademii Nauk. Vol. 145. 2. Russian Academy of Sciences. 1962, pp. 293-294
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Proposed KMM Hardware Architecture

2-Digit Karatsuba Matrix Multiplication (KMMa3)
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KMM Results
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Figure (1) Maximum achievable AU compute efficiencies for the

fixed-precision MMy, KSMM,,, and KMM,, architectures.
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Strassen Matrix Multiplication (SMM) [5]

Traditional 4-tile MM requires 8 tile MMs:

Cu  Go| _ [AuBu +AwBxn  AnbBo + ABx
G1 Cx» A21B11 + AnBa1 A Bix + AxnBx

Strassen [5] requires 7 tile MMs:

Ty = An + Ax» S1 = B+ Bx Q=T1-51
Ty = Ao + A S» = Bn Q=T-5
Ci=@1+ Qs — Qs+ Q
T3 =An S3 = B — Bx Q3= T3-53 C 040
12 =Q3 5
Ty = Axn S4 = By1 — Bux Qs =Ts- 54 C 0+ Q
21 = @2 4
Ts = A1 + A S5 = B Qs = Ts - S5
Co=0Q1— Q@+ QA+ Q
Te = A1 — A1 Se = B11 + B2 Q6 = T - Se
T7 = A — Ax S7=Bx1+ B Qr=T7-5

[5] Volker Strassen. “Gaussian elimination is not optimal”. In: Numer. Math. 13.4 (1969), pp. 354-356
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Proposed SMM Hardware Architecture
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Figure (2) SMM, systolic-array architecture for
implementing r levels of Strassen recursion in hardware.
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FFIP--SMM Results

Table (1) FFIP-+SMM, architectures in a DNN accelerator compared with prior state-of-the-art accelerators.

| | TNNLS '22[6] | TCAD '22[7] | Entropy '22[8] | TCAD'24[9] || Proposed FFIP+SMM; 32x32 |

| FPGA | Arria 10 GX 1150 | Arria 10 GX 1150 | Arria 10 GX 1150 | Stratix 10 GX650 || Arria 10 GX 1150 |

| ALMs | 304K | 304K | 303K | 152K [ 216K |

| Registers | 889K | 890K | - | 567K [ 627K |

| Memories | 2334 | 2334 | 1953 | 2056 [ 2713 |

| DSPs | 1473 | 1473 | 1503 | 1024 [ 1518 |

|  Frequency (MHz) | 200 | 220 | 172 | 200 1l 313 |

‘ Input bitwidth ‘ 8 ‘ 8 ‘ 8 ‘ 8 ‘ ‘ 8 8 8 ‘
(fixed-point)

‘ Model ‘ ResNet- VGG ‘ Bayes Bayes ‘ RCNN RCNN ‘ ResNet» ResNet- ‘ ‘ ResNet- ResNet-  ResNet- ‘

ResNet18 VGG1l | ResNet50 VGG16 152 101 152

‘ Throughput ‘ 1519 1295 ‘ 1590 534 ‘ ‘ ‘ ‘ 4006 4397 4568 ‘
(GOPS)

‘ mults/multiplier 1 | 55 0.550 ‘ 0.639 0.206 ‘ 0.696 0.837 ‘ 0.977 0.969 ‘ ‘ 1.674 1.837 1.908 ‘

clock cycle

1 Multiplier compute efficiency, measures how efficiently multipliers are utilized. It can surpass 1 in the proposed designs due to the algebraic enhancements.

[6] Shuanglong Liu et al. “Toward full-stack acceleration of deep convolutional neural networks on FPGAs". In: |EEE Trans
Neural Netw. Learn. Syst. 33.8 (2022), pp. 39743987

[7] Hongxiang Fan et al. “FPGA-based Acceleration for Bayesian Convolutional Neural Networks”. In: |EEE Trans
Comput.-Aided Design Integr. Circuits Syst. 41.12 (2022), pp. 5343-5356

[8] Jianjing An et al. “An OpenCL-Based FPGA Accelerator for Faster R-CNN". In: Entropy 24.10 (2022), p. 1346

[9] Kui Dai et al. “DCP-CNN: Efficient Acceleration of CNNs With Dynamic Computing Parallelism on FPGA”. In: |EEE
Trans. Comput.-Aided Design Integr. Circuits Syst. (2024)
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Thank You! Questions?
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